

WHO ARE WE?

- Tobias Zillner
- Senior IS Auditor @Cognosec
 in Vienna
 - Penetration Testing,Security Audits, SecurityConsulting
 - Breaking stuff
- Owner of a ZigBee based home automation system :D

- Sebastian Strobl
- Principal Auditor @Cognosec
 in Vienna
 - Plans and leads various types of IT audits
- Still trying to get his HD drone vision to work
- Now uses Z-Wave for home automation until we manage to break it too

AGENDA

- Introduction
- ZigBee Security Measures
 - The good
- ZigBee Application Profiles
 - The bad
- ZigBee Implementations
 - The ugly
- Demonstration
- Summary

WHAT IS ZIGBEE?

WHERE IS IT USED?

WHY IS IT IMPORTANT?

- Trend is wireless connections
- Samsung CEO BK Yoon:
 - "Every Samsung device will be part of IoT till 2019"³
- Over 500 smart device per household in 2022 ¹

¹ http://www.gartner.com/newsroom/id/2839717

² http://www.gartner.com/newsroom/id/2636073

³ http://www.heise.de/newsticker/meldung/CES-Internet-der-Dinge-komfortabel-vernetzt-2512856.html

FUTURE OF WIRED 10T

https://hivizme.files.wordpress.com/2012/06/cable-mess.jpg

WHY SECURITY?

- HOME automation has high privacy requirements
- Huge source of personalized data

Items of interest will be located, identified, monitored, and remotely controlled through technologies such as radiofrequency identification, sensor networks, tiny embedded servers, and energy harvesters - all connected to the next-generation internet¹

-Former CIA Director
David Petraeus

ZIGBEE SECURITY MEASURES

Security Measures

Symmetric Encryption

Message Authentication

AES-CCM* 128bit Integrity Protection

MIC 0 - 128 bit Replay Protection

> Frame Counter 4 Byte

ZIGBEE SECURITY

- One security level per network
- Security based on encryption keys
 - Network Key
 - Used for broadcast communication
 - Shared among all devices
 - Link Key
 - Used for secure unicast communication
 - Shared only between two devices

SECURITY ARCHITECTURE

Trust in the security is ultimately reduces to:

- Trust in the secure initialization of keying material
- Trust in the secure installation of keying material
- Trust in the secure processing of keying material
- Trust in the secure storage of keying material

HOW ARE KEYS EXCHANGED?

ZIGBEE APPLICATION PROFILES

THE BAD

APPLICATION PROFILES

- Define communication between devices
 - Agreements for messages
 - Message formats
 - Processing actions
- Enable applications to
 - Send commands
 - Request data
 - Process commands
 - Process requests
- Startup Attribute Sets (SAS) provide interoperability and compatibility

HOME AUTOMATION

- Default Trust Center Link Key
 - 0x5A 0x69 0x67 0x42 0x65 0x65 0x41 0x6C 0x6C 0x69 0x61 0x6E 0x63 0x65 0x30 0x39
 - ZigBeeAlliance09
- Use Default Link Key Join
 - 0x01(True)
 - This flag enables the use of default link key join as a fallback case at startup time.
- Return to Factory Defaults
 - In support of a return to factory default capability, HA devices shall implement a Network Leave service. Prior to execution of the NWK Leave [...] the device shall ensure all operating parameters are reset to allow a reset to factory defaults.

LIGHT LINK

- Devices in a ZLL shall use ZigBee network layer security.
- "The ZLL security architecture is based on using a fixed secret key, known as the ZLL key, which shall be stored in each ZLL device. All ZLL devices use the ZLL key to encrypt/decrypt the exchanged network key."
- "It will be distributed only to certified manufacturers and is bound with a safekeeping contract"

LIGHT LINK

rt: @MayaZigBee #DIY lover #ZLL master key 9F 55 95 F1 02 57 C8 A4 69 CB F4 2B C9 3F EE 31 #ZigBee #Philips #Hue

MayaZigBee @MayaZigBee · Mar 29
Should the #ZLL master key be illegal? Should a #free #DIY
#interoperability be illegal (w a light bulb, mind you)? Make sure the
key lives!

LIGHT LINK

- nwkAllFresh
 - False
 - Do not check frame counter
- Trust center link key
 - 0x5a 0x69 0x67 0x42 0x65 0x65 0x41 0x6c 0x6c 0x69 0x61 0x6e
 0x63 0x65 0x30 0x39
 - Default key for communicating with a trust center
- Use insecure join
 - True
 - Use insecure join as a fallback option.

OFFICAL STATEMENT

• "To avoid "bugs" that an attacker can use to his advantage, it is crucial that security be well implemented and tested. [...] Security services should be implemented and tested by security experts [...]." (ZigBee Alliance 2008, p. 494)

REQUEST KEY SERVICE

 "The request-key service provides a secure means for a device to request the active network key, or an end-to-end application master key, from another device" (ZigBee Alliance 2008, p. 425)

ZBOSS

```
Remote device asked us for key.
Application keys are not implemented.
Send current network key.
Not sure: send unsecured?
What is meaning of that command??
Maybe, idea is that we can accept "previous" nwk
key?
Or encrypt by it?
```


Initiate unsecured key transfer.

Not sure it is right, but I really have no ideas about request meaning of key for network key.

*/

TESTED DEVICES

Door Lock

Smart Home System

RESULTS

- ALL tested systems only use the default TC Link
 Key for securing the initial key exchange
- No link keys are used or supported
 - Complete compromise after getting network key
- No ZigBee security configuration possibilities available
- No key rotation applied
 - Test period of 11 month

RESULTS

- Device reset often difficult
 - Removal of key material not guaranteed
 - One device does not support reset at all
- Light bulbs do not require physical interaction for pairing
- Workarounds like reduced transmission power are used to prevent pairing problems
 - Devices have to be in very close proximity for pairing

DEMONSTRATION

SecBee

SecBee

- ZigBee security testing tool
- Target audience
 - Security testers
 - Developers

Raspbee

USRP B210

- Based on scapy-radio, μracoli and killerbee
- Provides features for testing of security services as well as weak security configuration and implementation
 - Support of encrypted communication
 - Command injection
 - Scan for weak key transport

- Reset to factory
- Join to network
- Test security services

DATA TRANSFER

DEMONSTRATION

KEY EXTRACTION

NETWORK KEY SNIFFING

Fallback key exchange insecure

Most vendors only implement fallback solution

Same security level as plaintext exchange

VENDOR COMMENT

NETWORK KEY SNIFFING

So, the

1. Timeframe is limited

- 2. Proximity is necessary
- 3. Key extraction works only during pairing
- ... what would an attacker do?

Typical End-User

NETWORK KEY SNIFFING

Jam the communication

Wait for users to re-pair the device

It is not only about technology:D

DEMONSTRATION

COMMAND INJECTION

DEMONSTRATION

DEVICE HIJACKING

DEVICE HIJACKING

Devices are paired and working

- 1. Identify the target device
- 2. Reset to factory default settings
- 1. Join the target device to our network

DEVICE HIJACKING

No physical access is required

No knowledge of the secret key is needed

Usability overrules security

SUMMARY

- Security measures provided are good
- Requirements due to interoperability weaken the security level drastically
- Vendors only implement the absolute minimum to be compliant
- Usability overrules security

BLACK HAT SOUND BYTES

- Proper implementation of security measures is crucial - Compliance is not Security
- Learn from history and do not rely on "Security by Obscurity"
- There is a world beside TCP/IP

TIME FOR QUESTIONS

LET'S TALK ABOUT IT

CONTACT

Tobias Zillner

Mobile: +43 664 8829 8290

Email: tobias.zillner@cognosec.com

cognosec

Please complete the speaker feedback survey

