
 1

Abstract— The widespread adoption of AWS as an enterprise
platform for storage, computing and services makes it a lucrative
opportunity for the development of AWS focused APTs. We will
cover pre-infection, post-infection and advanced persistency
techniques on AWS that allows an attacker to access staging and
production environments, as well as read and write data, and even
reverse its way from the cloud to the the corporate datacenter.

I. INTRODUCTION
his paper will cover several methods of infection
including a new concept called "account jumping" for
taking over both PaaS (e.g. ElasticBeans) and IaaS (EC2,

EC2 Containers) resources, poisoned AMIs, dirty account
transfer, and leveraging S3 and CloudFront for performing
AWS specific credentials thefts that can easily lead to full
account access.
 In addition, we will focus on the post-infection phase, and
look at how attackers can manipulate AWS resources (public
endpoints like EC2 IPS, Elastic IPS, load balancers and more)
for complete MITM attacks on services.
 We will further describe how an attacker’s code can be well-
hidden via Lambda functions, cross zone replication
configurations, and the problem with storage affinity to a
specific account.
 We will also examine hybrid deployments from the cloud
and compromising the on-premise datacenter by leveraging
and modifying connectivity methods (HW/SW VPN, Direct
connect or cloud hub).
 Finally, we will suggest best practices that can be used to:
protect against attacks such as bastion SSH/RDP gateways;
understand the value of CASB based solutions and where they
fit; leverage audit and HSM capabilities in AWS; and utilize
different isolation approaches to create isolation between
administrators and the cloud, while still providing access to
critical services.

II. INFECTION
Amazon Web Services (AWS) provides an easy-to-manage

cloud platform to store digital assets, host servers and more.
Amazon also has many settings for security controls, including
a firewall to block incoming and outgoing traffic, and different
identity and access management (IAM) accounts with varying
levels of privileges. However, mis-configurations or bad
management of credentials can allow an attacker to gain
access into the cloud, and exfiltrate both company and
consumer data.

A. The AWS Infection Potential
One of the strong usability points in AWS is that every action

has a corresponding public API endpoint. In fact, the
API is even larger in scope than the AWS Management Console
itself. Every API call made to AWS is authenticated via an
access key and a secret key, and then authorized via the
corresponding permissions that were assigned in IAM (AWS’s
identity management service).

An attacker must first move into an organization’s AWS
account to gain access to credentials (e.g. user, password &
MFA device if activated), or to an access token. Once access
has been established, the attacker then attempts to perform
elevation of privileges (if needed) to escape Cloud Trail’s
watchful eye, which is the auditing service in AWS (if
activated).

figure 1: AWS infection potential.

B. AWS Third-parties
 It is imperative to analyze the trust relationship between
external services in use. Whenever choosing a service to
support an AWS environment, organizations must understand
the risks by doing so, and take steps to protect assets.

1) Source Repositories
 Source code repositories such as Github and Bitbucket are
well-known targets for crawlers seeking secret keys. There are
many well-documented cases online that highlight user
accounts being compromised by such a leak of credentials.

2) Cloud Monitoring Services
 Cloud monitoring services such as datadog receive
unfiltered information directly from the AWS environment. In
some cases, this data may contain secrets that will be stored in

ACCOUNT JUMPING POST INFECTION PERSISTENCY & LATERAL
MOVEMENT IN AWS

Dan Amiga (dan@fire.glass) , Dor Knafo (dor@fire.glass)

T

 2

other services that are probably less secure than AWS. One
scenario is using a third party to analyze AWS CloudTrails.
AWS CloudTrail is a web service that records API calls for an
account and delivers corresponding log files. For example,
when using with Elastic Container Service (ECS), task
definitions that pass to the container will be logged. Task
definitions contain environment variables, and while it is not
recommended by Amazon to store secrets in task definitions,
it is common to store credentials that can be leaked less secure
services, and therefore increase the odds of being stolen by an
attacker. Recently, Datadog, which is a widely used cloud
monitor service, has been hacked. As such, the credentials
used to integrate with this service, and the credentials that
have been logged by CloudTrail, are in danger.

3) Phishing and Man in the Browser
 Traditional email phishing attacks are also associated with
AWS. There are many techniques to enhance the reputation of
a source in order to make a phishing attack more effective. One
example is to host a phishing website on AWS S3 and use the
static serving option. In this case, the malicious person exploits
both S3 domain and Amazon favicon to trick victims into
opening an attachment, clicking on a link, or divulging
confidential information.
 Another popular phishing method is to send phony AWS
emails to admins, such as the famous E2 [Retirement
Notification]: “Amazon EC2 Instance scheduled for
retirement” or the common “Amazon Web Services Invoice
Available”. Already-infected administrator endpoints, such as
those with man in the browser attacks (e.g. browser extensions),
can be used to gain access to and leak credentials or access keys.

4) Metadata Server
 All EC2 instances have meta-data, such as the used AMI,
kernel and region. The instance metadata is available from the
running instance. To view all categories of instance metadata
from within a running instance, use the following URI
http://169.254.169.254/latest/meta-data/
 In many cases, an EC2 instance is used as a proxy, and can be
manipulated to send a request to the instance metadata. An
attacker can use the information stored in the instance metadata
to gain access to the AWS environment. For example, the
following categories are stored in the instance metadata and can
lead to credentials theft:

- Local IP Address
- User-data
- Instance profile
- AMI

 It is also possible that the AMI the server is using can be
compromised to gain access to EC2 instance. A more elegant
and reasonable scenario would be using the access to the
instance metadata in order to get instance profile information.
Instance profiles are defined by the AWS architect, who
determines which permissions will be available to the EC2
instance using the profile. In this case, it is possible to steal the
credentials since the access tokens are stored in the instance
metadata.

5) Poisoned AMI
 All AMIs should be carefully examined before being
launched within an account. Any AWS account administrator
can build an Amazon Machine Image (AMI) and expose it to
other accounts. This opens the door to several infection points.
If by mistake (or phishing, or any other form of social
engineering) a malicious AMI is launched without an enterprise
account, that AMI can then run well-hidden malicious code. In
addition, code within an instance of an AMI in an enterprise
account can be granted (by an innocent admin) permissions via
instance profiles. Also, many admins only care that AMIs “just
work”, and do not focus on the fact that AMIs should be run
through vulnerability scanning.

figure 2: Public AMI process.

6) Account leftovers & “Account Jumping”
 In light of the constant need to save money, organizations
(startups especially) often purchase an AWS account from third
parties for a discount. A good example arethose that give free
credits through startup accelerators and seed programs.
However, often these startups tend to close shop. They are then
left with accounts that have tens of thousands of USDs in AWS
credits, which they put on for sale for a very large discount in
some form of black market. A prospective buyer would need to
iterate through all the resources in all the regions and detect any
leftovers -- this is not a trivial task! Since there is no ‘clean
account’ option, and some resources would even stay
undetected in terms of billing (e.g. resources that fall into the
free tier), there is a large potential for resources to stay active.
Good examples are free tier lambda functions and SNS
notifications that can be used to leak data, and/or access keys to
the outside world.

III. POST INFECTION
Once an account has been compromised, the next obvious

challenges are how to stay undetected for as long as possible,
how to silently research the environment, and how to create as
many persistency hooks as possible.

A. Staying Undetected
AWS has done a great job creating multiple logging and

auditing mechanisms. Primarily:
1. AWS CloudTrail is a web service that records API calls

for am account and delivers corresponding log files.
2. AWS Config, which is an integrated AWS service that

enables automatic enforcement and verification of AWS
resource modifications.

3. AWS Cloud watch, which is an integrated monitoring

 3

service for AWS that enables organizations to collect,
monitor, set alarms, and automatically react to changes
in AWS resources.

 We are suggesting various techniques that enable an attacker
to stay under the radar of the above security mechanisms, and
alter resources, query data and inject new persistency hooks
into the environment.

B. AWS CloudTrail
 CloudTrail should always be activated on a global scope.
Otherwise, admins have no visibility to actions undergoing
inside the account. Since it’s a paid service and due to the fact
that it is not turned on by default, there is a likelihood that
certain accounts will not have the service configured. However,
for the purpose of this paper, we assume a more advanced and
security focused admin is managing the account, and that
CloudTrail is activated. Here is how an attacker can alter the
normal behavior of a CloudTrail enabled account:
 The first option is to delete or stop the CloudTrail
configuration by using the API Calls:

 $ aws cloudtrail delete-trail --name <trail>
 $ aws cloudtrail stop-logging --name <trail>

These methods are loud, and it reasonable that an admin will be
actively monitoring them. On the other hand, CloudTrail will
stop logging API calls immediately, and the admin will need to
determine what the attacker did with the stolen credentials.
 CloudTrail by default applies to all regions. As such, it creates
the same trail in each region, and delivers log files for all
regions. An attacker can disable this setting so that only the
home region (i.e. the region where the CloudTrail was created)
will continue logging:

$ aws cloudtrail update-trail --name <trail> --no-is-multi-
region-trail --no-include-global-service-events

Notice that the flag “no-include-global-service-events” will
disable the logging from a global service such as IAM and AWS
STS.
 CloudTrail typically delivers log file within 15 minutes of an
API call. In addition, the service publishes log files multiple
times an hour; usually about every five minutes. These log files
contain API calls from all of the account’s services that support
CloudTrail.

figure 3: AWS CloudTrail high-level structure.

 To make the life a bit harder for the admin, an attacker can
update the S3 bucket lifecycle configuration to delete the files
after one day only. In this case, we did not prevent logging
completely, but it is stealthier than the previous options.
 Another way to manipulate the S3 bucket is to use event-
driven compute service, where AWS Lambda runs code in
response to events, such as changes in data in an Amazon S3
bucket or DynamoDB table. A good option is to set up a lambda
to immediately delete every log file written to this S3 bucket.
Lambda function is invoked directly by S3, and it will win any
race against other code attempting to consume files written to
the bucket, making them invisible.
Lambda free tier includes 1 million requests per month and
400,000 GB seconds of compute time per month. Using this
lambda function to hide trails for a whole month will require
43800 / 5 = 8760 requests, 0.00876% of the free tier, and has
no effect on the monthly bill.
 The AWS Key Management Service (KMS) is a managed
service that makes it easy to create and control encryption
keys used to encrypt data. Encrypting CloudTrail log files
with KMS builds on the S3 feature called server-side
encryption (SSE). When configuring CloudTrail to use SSE-
KMS to encrypt log files, CloudTrail and S3 use KMS’s
customer master key (CMK) when certain action are
performed with those services.
 Each time CloudTrail puts a log file into the S3 bucket, S3
sends a ״GeneratDataKey״ request to KMS on behalf of
CloudTrail. In response to this request, KMS generates a
unique data key, and then sends S3 two copies of the data key
one in plaintext and one that is encrypted with the specific
CMK. S3 uses the plaintext data key to encrypt the CloudTrail
log file. S3 stores the encrypted data key as metadata with the
encrypted CloudTrail log file.
 Each time an organization receives an encrypted CloudTrail
log file from the S3 bucket, S3 sends a ״Decypt״ request to
KMS on behalf to decrypt the log file’s encrypted data key. In
response to this request KMS uses the CMK to decrypt the
data key, and then sends the plaintext key to S3 that uses the
key to decrypt the CloudTrail log.

Here is how all fits together:

figure 4: AWS KMS integration with AWS CloudTrail.

 An attacker can leverage this knowledge to enable encryption
of the log file using a KMS with a policy that does not allow

 4

decryption for all users, but allows to ״GeneratDataKey״ only
to CloudTrail, so that CloudTrail will accept the key’s policy:

$ aws kms create-key --policy <kmspolicy> --bypass-policy-

lookout-safety-check

The “bypass-policy-lookout-safety-check” flag will prevent the
principal making the request from making a subsequent put-
key-policy request to CMK, so that the CMK becomes
unmanageable. Encrypt the trails using the newly created key:

$ aws cloudtrail update-trail --name <trail> --kms-key-id

<key-id>

 Disable and schedule the key for deletion so that S3 will fail
to call “GenerateDataKey” for this key and as a result
CloudTrail will be failed to log:

$ aws kms disable-key --key-id <key-id>
 $ aws kms schedule-key-deletion --key-id <key-id>

--pending-window-in-days 7

 The key deletion cannot happen immediately, but the trails
will not be written regardless. Inspecting the trails in the AWS
web interface will not show any sign of failure, either.
However, checking the trail status via cli will show
“LastDeliveryError” as “KMS.DisableException”.

$ aws cloudtrail get-trail-status --name <trail>.

IV. PERSISTENCY
After the attacker gains control of the AWS environment, one

course of action is to plant backdoors to get the access back,
even if the admin must delete the stolen access token.

1) Security Token Service
 The AWS Security Token Service (STS) is a web service
that enables organizations to request temporary, limited-
privilege credentials for AWS Identity and Access
Management (IAM) users, or for users that have been
authenticated (federated users).
 When the access token that used to create the session token is
deleted, the session token continues working until its expiration
time. Acceptable durations for IAM user sessions range from
900 seconds (15 minutes) to 129600 seconds (36 hours), with
43200 seconds (12 hours) as the default. Sessions for AWS
account owners are restricted to a maximum of 3600 seconds
(one hour). If the duration is longer than one hour, the session
for an AWS account owner defaults to one hour. The following
will generate a session token that will last for 36 hours:

$ aws sts get-session-token --duration-seconds 129600

 There are some restrictions for using a session token. For
example, it is not possible to call any IAM APIs unless MFA
authentication information is included in the request, and it is
not possible to call any STS API except AssumeRole. These are

easy to bypass if the original token has “iam:passRole”
permissions, to spin up a compute with iam permissions.

2) Virtual “Private” Cloud -
 Backdoor a VPC can be done using a publicly accessible
endpoint to the internet and a Lambda function. A public
AWS endpoint can be a SQS or AWS Gateway API used to
receive commands from the internet. The public endpoint can
integrate with Lambda function that resides inside a VPC.
Although the VPC that we would like to backdoor has a
security group that denies all inbound and outbound traffic,
using the public endpoint to receive commands triggers the
lambda function from inside the VPC.

figure 5: Example of VPC backdoor architecture.

 In this case, the SQS receives commands from the internet,
an AWS Lambda that polls from the queue, and then sends to
the lambda inside the VPC the incoming command. When the
lambda inside the VPC gets the command, it executes it inside
the VPC.

V. CONCLUSION

The widespread adoption of AWS as an enterprise platform
for storage, computing and services makes it a lucrative
opportunity for the development of AWS focused APTs. This
paper covered how an AWS environment can be infected, and
discussed post-infection first steps, and advance persistency
techniques that can allow an attacker to access staging and
production, remain undetected for years, and even backdoor a
VPC.

 5

REFERENCES
Aslam, Bilal. (2016). Our Nightmare on Amazon ECS.
Retrieved from http://www.appuri.com/blog/-our-docker-
nightmare-on-amazon-ecs

Amazon Web Services, Inc. (2016). Instance Metadata and
User Data. Retrieved from
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-
instance-metadata.html

Amazon Web Services, Inc. (2016). Using API Gateway with
VPC endpoints via AWS Lambda. Retrieved from
https://aws.amazon.com/blogs/compute/using-api-gateway-
with-vpc-endpoints-via-aws-lambda

Amazon Web Services, Inc. (2016). Using Instance Profiles.
Retrieved from
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_u
se_switch-role-ec2_instance-profiles.html

Amazon Web Services, Inc. (2016). Task Definition
Parameters. Retrieved from
http://docs.aws.amazon.com/AmazonECS/latest/developergui
de/task_definition_parameters.html

Balduzzi, M., Zaddach, J., Balzarotti, D., Kirda, E., and
Louiero, S. (2012). A Security Analysis of Amazon’s Elastic
Compute Cloud Service. IEEE/IFIP International Conference
on Dependable Systems and Networks Workshops (DSN
2012).

Barron, C., Yu, H., and Zhan, J. (2013). Cloud Computing
Security Case Studies and Research. Proceedings of the World
Congress on Engineering 2013. Vol II, WCE 2013, July 3 - 5,
2013.

Becherer, Andrew (2016). 2016-07-08 Security Notice.
Retrieved from https://www.datadoghq.com/blog/2016-07-08-
security-notice

Grzelak, D. (2016). Backdooring an AWS Account. Retrieved
from
https://danielgrzelak.com/backdooring-an-aws-account-
da007d36f8f9

Grzelak, D. (2016). Exploring an AWS Account Post-
Compromise. Retrieved from
https://danielgrzelak.com/exploring-an-aws-account-after-
pwning-it-ff629c2aae39

Grzelak, D. (2016). Disrupting AWS Logging. Retrieved from
https://danielgrzelak.com/disrupting-aws-logging-
a42e437d6594

Padhy, R.P., Patra, M. R., and Satapathy, S.C. (2011). Cloud
Computing: Security Issues and Research Challenges. IRACST
- International Journal of Computer Science and Information
Technology & Security (IJCSITS). Vol. 1, No. 2, December
2011.

Riancho, A and Shah, J. (2014). Amazon AWS Services’
Security Basics – Escalating Privileges from EC2. Black Hat
Webcast. Webcast retrieved from
https://www.blackhat.com/html/webcast/11202014-amazon-
web-services-security-basics-escalating-privileges-from-
ec2.html

